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BAGLS, a multihospital Benchmark 
for Automatic Glottis Segmentation
Pablo Gómez   1,12 ✉, Andreas M. Kist   1,12 ✉, Patrick Schlegel1, David A. Berry2, 
Dinesh K. Chhetri2, Stephan Dürr1, Matthias Echternach   3, Aaron M. Johnson   4, 
Stefan Kniesburges1, Melda Kunduk5, Youri Maryn6,7,8,9,10, Anne Schützenberger1, 
Monique Verguts6,11 & Michael Döllinger1

Laryngeal videoendoscopy is one of the main tools in clinical examinations for voice disorders and voice 
research. Using high-speed videoendoscopy, it is possible to fully capture the vocal fold oscillations, 
however, processing the recordings typically involves a time-consuming segmentation of the glottal 
area by trained experts. Even though automatic methods have been proposed and the task is 
particularly suited for deep learning methods, there are no public datasets and benchmarks available 
to compare methods and to allow training of generalizing deep learning models. In an international 
collaboration of researchers from seven institutions from the EU and USA, we have created BAGLS, a 
large, multihospital dataset of 59,250 high-speed videoendoscopy frames with individually annotated 
segmentation masks. The frames are based on 640 recordings of healthy and disordered subjects that 
were recorded with varying technical equipment by numerous clinicians. The BAGLS dataset will allow 
an objective comparison of glottis segmentation methods and will enable interested researchers to 
train their own models and compare their methods.

Background & Summary
Disorders of the human voice have a devastating impact on the affected and society in general. Numerous studies 
have shown a reduced quality of life1, a severe negative socioeconomic impact2 and the high prevalence of such 
disorders3. In particular, voice disorders have been associated with a variety of factors. For example, they are more 
prevalent in the elderly, where muscle atrophies and other age-related changes become a problem4. They also, on 
average, are more prevalent in women and some professions such as teachers and singers3,5,6.

Clinical examination of voice disorders is challenging due to the small-scale, high-frequency oscillation of the 
vocal folds which is critical in the creation of an acoustic speech signal7. Therefore, advanced imaging techniques, 
such as videostroboscopy and high-speed videoendoscopy (HSV)8–10, are employed clinically and in research. The 
involved anatomy and an exemplary endoscopic image are shown in Fig. 1.

One of the state-of-the-art methods in research and to enable a computer-aided diagnosis is the quantifica-
tion of the vocal fold oscillation by segmenting the area between the vocal folds, the so-called glottis, in HSV 
recordings. A variety of oscillation parameters computed from the segmentation are used to provide an objective 
description of the oscillation11–14. However, the segmentation is still to some extent subjective, as it is usually 
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performed semi-automatically with manual user intervention15. Even though automatic methods have been pro-
posed16,17, they have only been evaluated on limited data from few individuals and, thus, offer limited compara-
bility and transferability to other datasets. Overall, robust and automatic segmentations methods will reduce the 
workload of personnel and provide clinicians with more objective information than currently available in the 
clinical routine. Furthermore, such evidence-based diagnostics are critical in the health and insurance sector.

With the advent of deep learning methods, more robust yet fast image processing methods have become avail-
able18. However, they offer specific challenges as they require large amounts of annotated data19,20. Furthermore, 
these methods tend to require training on diverse datasets to allow transferability to new data21. Also, robustness 
is critical for a clinically-used deep neural network22–25. This is a challenge in medicine, where only limited data 
are available and the data usually require expert annotations. Additionally, data protection is particularly critical 
for medical data, which often limits the options for providing publicly available data. Furthermore, one has to 
ensure that the data cannot be deanonymized, i.e. allows for no derivation of any subject data. This is also the case 
in voice research and there are currently no public datasets for glottis segmentation. This is unfortunate, as in 
many domains, such as radiology26–28 or ophthalmology29, the availability of public datasets has propelled these 
topics to the frontier of machine learning research and spurred innovation, collaboration and research advances.

With the Benchmark for Automatic Glottis Segmentation (BAGLS), we aim to fill this gap and, in a collabora-
tion of seven research groups from the USA and Europe, we created a benchmark dataset of HSV recordings for 
glottis segmentation. This multihospital dataset comprises recordings from a diverse set of patients, disorders and 
imaging modalities. It was annotated and double-checked by multiple experts. This dataset will allow an objective 
comparison of automatic segmentation methods, which will facilitate a more objective diagnosis, will save valu-
able expert time and is thus a crucial step in bringing automatic glottis segmentation to the daily clinical routine. 
We provide the BAGLS dataset to other research groups openly online and hope that it will fuel further advances 
and support international collaboration in the voice, medical imaging and machine learning community. Overall, 
this dataset fills the gap caused by the overall lack of a publicly available dataset for glottis segmentation and can 
serve as a litmus test for future methods for the task.

Fig. 1  Workflow for creating the BAGLS dataset. Subjects with varying age, gender and health status were 
examined at different hospitals with differing equipment (camera, light source, endoscope type). The recorded 
image data is diverse in terms of resolutions and quality. Next, the glottis was segmented using manual or 
semi-automatic techniques and the segmentation was crosschecked. The segmented videos were split into a 
training and a test set. The test set features equal amounts of frames from each hospital. We validated BAGLS by 
training a deep neural network and found that it provides segmentations closely matching the manual expert 
segmentations.

https://doi.org/10.1038/s41597-020-0526-3


3Scientific Data |           (2020) 7:186  | https://doi.org/10.1038/s41597-020-0526-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Methods
The BAGLS dataset aims to provide a baseline as robust as possible. Therefore, it was created in such a way that it 
contains diverse samples from a variety of data sources, which are explored in detail in this section. Further, sev-
eral experts created the segmentation masks for the data using specifically developed software tools for the task. 
To provide a baseline score and validate the benchmark data, we trained a state-of-the-art deep learning segmen-
tation network on BAGLS. An overview of the acquisition, processing and validation steps is provided in Fig. 1.

Videoendoscopy and Glottis Segmentation.  Several imaging techniques have been conceived for 
recording the high-frequency, small-scale oscillation of the vocal folds and laryngeal endoscopy is one of the 
primary diagnostic tools for voice disorders30. The most common techniques are videostroboscopy8, videoky-
mography31 and high-speed videoendoscopy (HSV)10. Videos are then inspected by clinicians to gain insight to 
aid diagnosis or, in research, to understand the phonatory process.

Segmentation of the glottal area has been a well-established practice to quantify the vocal fold oscillation and 
extract additional information from HSV recordings32.

Numerous studies have shown significant relationships between different disorders and parameters computed 
from the segmentation data33–35, such as the cepstral peak prominence11. Typical signals derived from the glottis 
segmentation are the glottal area waveform (GAW)36, the vocal fold trajectories37 and the phonovibrogram38. 
Parameters computed from these signals bear the promise of a higher objectivity than many of the purely subjec-
tive metrics still being employed in the clinical routine36,39–41. Figure 1 shows an exemplary HSV frame and the 
corresponding segmentation.

Even though the utility of glottis segmentation is clear, it is a laborious and time-consuming task that requires 
trained experts. And, although the binary segmentation into the classes background and glottal area might seem 
rather simple, in practice, there are several factors impeding completion of the task:

•	 Videos often feature a reduced image quality due to the technical requirements of HSV, such as a lower reso-
lution and brief exposure time due to the high sampling rate9.

•	 Videos are often ill-lit, affected by patient movement and artifacts such as reflections caused by mucus and 
thus require additional image processing32,42.

•	 Parts of the glottis are often concealed due to the spatial limitations and parts of the anatomy such as the 
arytenoid cartilages covering others.

•	 Video quality and features vary noticeably depending on recording setup and subject.

Trained experts anecdotally require about 15 minutes to segment a 1,000 frames long HSV recording using 
specifically developed software. Therefore, several previous works have explored the possibility of performing an 
automated segmentation of the glottal area16,17,43–46.

However, all of the previous works only tested their methods on small datasets consisting of less than 25 
different recordings from a single source, most used 10 or fewer HSV recordings. Further, common semantic 
segmentation metrics, such as the Dice coefficient47 or Jaccard index48 (also known as Intersection-over-Union), 
were often not determined.

The BAGLS benchmark dataset will be essential in testing segmentation algorithms’ practical applicability as it:

•	 provides the data necessary to train state-of-the-art deep learning methods for the task,
•	 allows an objective quantification of the quality of automatic segmentation methods,
•	 provides the data diversity necessary to achieve robustness in the clinical routine, where algorithms that are 

trained on data from one source usually do not perform well on data from another source.

Data.  The performance of deep learning methods usually only translates to data from similar sources. Transfer 
between different data sources can be achieved using transfer learning techniques, but is not guaranteed21,49. 
Videoendoscopy is a widely employed imaging modality, and, thus, the differing recording hardware, software 
and varying clinicians introduce great variability to the data. To ensure that an automatic segmentation method 
actually performs well on the whole range of data, it is essential to also test it on a diverse dataset. This is one of the 
core motivations of this work and the provided data show a great diversity in the following respects:

•	 The HSV recordings were collected at seven different institutions from the USA and Europe.
•	 The data were collected using a variety of cameras, light sources, image resolutions, sampling rates and endo-

scope types.
•	 The data contain samples with both healthy and disordered phonation, presenting with both functional and 

organic dysphonia.
•	 The dataset is comprised of recordings from all age groups except young children and contains large amounts 

of samples from male and female subjects.
•	 The data contain pre-dominantly grayscale, but also color images (RGB).

Ethnicity was not determined during data collection. Thus, we presume the data reflects the average ethnicity 
distribution at the respective hospitals. Notably, the ethnic background may have an influence on the parameters 
derived from the segmentation50,51.
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In this study, we not only provide the first publicly available dataset for glottis segmentation but also one that 
reflects the diversity of the clinical reality and is therefore particularly well suited to measure the performance of 
segmentation methods for this task.

All data were acquired in accordance with local ethics committees and are covered by Boston University IRB 
(2625), University of Illinois, Urbana-Champaign, IRB (14141), Ethikkommission University Hospital Freiburg 
(EK83/15), University of Ghent (190311RETRO), Louisiana State University IRB (2668), Medical School at 
Friedrich-Alexander-University Erlangen-Nürnberg (290_13B), and the University of California, Los Angeles, (2010-
021-(01, 02, 02A, 03, 03A, 11, 12, 13, 21, 21A, 22, 23, 23A, 31)). Written consent was obtained from all subjects.

Data Diversity.  In deep learning, which is used for state-of-the-art segmentation algorithms19,20, data diversity 
is also critical as the trained networks usually reflect potential biases in the data, such as are also known to be 
problematic as the trained networks usually reflect potential biases in the data52. In case of glottis segmentation, 
this is comparatively less problematic as the methods are not aimed to provide a supposed diagnosis and possible 
errors in the segmentation can be spotted relatively easily. However, to ensure that the trained networks perform 
well on the broad range of recorded data and for underrepresented cases it is necessary to include at least some 
of these cases in the data. Note that the dataset thus explicitly aims to cover diverse image acquisition modalities 
and, by design, avoids standardization of the image acquisition procedure which inherently varies between hos-
pitals and countries. We aimed to achieve the necessary diversity by working together in an international coop-
eration, where each group specifically aimed to provide data matching the diversity encountered in their clinical 
and research routine. An overview of the number of videos and frames per group in the training and test is given 
in Table 1. As the availability of data differs between groups, it was not possible to balance the training data such 
that each group is represented equally. The test data, however, is split equally among groups ensuring that a 
method has to perform well on data from all or most of the institutions to achieve good scores on the benchmark. 
The noticeable overrepresentation of training data from the Erlangen group may thus influence training, but the 
scores on the balanced test set will indicate if this was a problem.

We provide individual frames of the videos that are discontinuous and randomly selected to enhance data diversity 
as consecutive frames typically show little variation. For each video in the test dataset, 50 frames were randomly selected 
leading to a total of 3500 frames from 70 videos. For the training data, either 50 or 100 frames (some videos were too 
short for more than 50 discontinuous frames) were randomly selected and a total of 55750 frames was selected from 570 
HSV recordings. We further provide the entire raw data used to create the BAGLS dataset. With this, algorithms based 
on time variant data can be trained and analyzed as suggested by17 or used in studies focusing on kymography53,54.

We provide a detailed breakdown of the provided data in terms of age, sex and disorder status to emphasize 
the data diversity and give a detailed overview of the data. The frames and videos contained in the BAGLS dataset 
are provided with corresponding metadata. Figure 2 shows the age distribution in the data. The mean age was 
38.22 ± 18.58 years, with a range from 14 to 91. The data stem from 432 females and 177 males, for 31 recordings 
no sex was reported. In Table 2 diagnosed voice disorders at the time of the recording are shown. In total, 380 
recordings of healthy subjects, 262 cases of identified disorders and/or noticeably affected vocal fold oscillations 
are present in the data. No health status was available for 50 subjects. Notably, disorders are heterogeneous and 

Institution # in training # in test

Boston University 10 10

Louisiana State University 15 10

New York University 14 10

Sint-Augustinus Hospital, Wilrijk 30 10

University of California, Los Angeles 20 10

University Hospital Erlangen 458 10

University Hospital of Munich (LMU) 23 10

Total Number of Videos 570 70

Total Number of Frames 55750 3500

Table 1.  Composition of the dataset in relation to origin; the training data featured 50 or 100 frames per video 
depending on video length and test data 50 frames per video.

Fig. 2  Age distribution of subjects in the BAGLS dataset.
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besides functional disorders also include organic disorders, such as edema as well as benign and malignant neo-
plasias. Recordings including abnormal tissue growth may lead to poor segmentations and incorporation of those 
recordings in the dataset is crucial for judging the automatic segmentation methods’ robustness.

Overall, the dataset features great variability and diverse representation in terms of age, sex, and disorder 
status. Furthermore, as it comprises data from seven institutions, a multitude of clinicians were involved in the 
acquisition of the recordings, which further broadened the diversity of the dataset.

Technical Equipment.  The dataset does not only feature diversity in regard to clinicians and subjects involved. 
As the different institutions represented in this work use differing equipment and recording setups, a great vari-
ety of cameras, light sources, endoscopes and imaging settings, such as sampling rate and image resolution, are 
represented. Utilized sampling rates range from 1000 Hz to 10000 Hz and are shown in detail in Table 3 on the 
left side. The different image resolutions in the dataset can be seen on the right side of Table 3. In particular, the 
smallest resolution is 256 × 120 px and the largest one 512 × 512 px. Note that aspect ratios of the images also 
vary (see Fig. 3). Tables 4 and 5 provide an overview of the utilized cameras, light sources and endoscope types. 
Five different cameras were used for the HSV recordings with three different light sources. The dataset contains 
recordings acquired with rigid oral endoscopes at an angle of 70° and 90° as well as flexible nasal endoscopes with 
two different diameters. Overall, 618 videos contained grayscale data and 22 featured RGB data.

Expert Annotations.  Three experts in glottis segmentation created the segmentations for the dataset. 
Previous studies have shown that inter- and intra-rater variability in voice research can be a concern55–58. The 
BAGLS dataset aims to compensate for this by using segmentations that were crosschecked by multiple experts. 
We further validated these segmentations as described in the Technical Validation section. Two different software 
tools were used to ensure a high quality of the segmentation mask, especially in the test data. The detailed seg-
mentation procedure was as follows:

	 1.	 Videos were inspected to judge which software tool, either the Glottis Analysis Tools (GAT) software or the 
Pixel-Precise Annotator (PiPrA) software, was appropriate for the segmentation (both are described in the 
following).

	 2.	 Each video was segmented by one expert using the selected software.
	 3.	 After an additional inspection of the video, the segmentation was either refined using the PiPrA software 

or kept as is.
	 4.	 After segmentation of all videos, videos were randomly split into test and training sets so that each group 

contributed ten videos to the test data and the rest to the training data.
	 5.	 As scores rely on the test data segmentations, they were checked once by another expert and, when neces-

sary, adjustments were made using the PiPrA software.

Disorder Status # of videos Disorder Status # of videos

Healthy 380 Contact granuloma 5

Muscle tension dysphonia 139 Paresis 4

Muscle thyroarythaenoideus atrophy 25 Laryngitis 4

Vocal insufficiency 18 Papilloma 1

Edema 14 Leucoplacia 1

Insufficient glottis closure 14 Carcinoma 1

Nodules 13 Other 8

Polyp 9 Unknown status 50

Cyst 6

Table 2.  Overview of voice disorders represented in the BAGLS dataset, multiple disorders per video are possible.

Sampling rate [Hz] # of videos Resolution # of videos

1000 21 256 × 120 15

2000 17 256 × 256 88

3000 30 288 × 128 7

4000 542 320 × 256 33

5000 1 352 × 208 30

6000 2 352 × 256 11

8000 26 512 × 96 1

10000 1 512 × 128 22

512 × 256 431

512 × 512 2

Table 3.  Overview of the sampling rates and resolutions of the recorded HSV data in the dataset.
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Fig. 3  The BAGLS dataset. (a) The folder structure of the dataset. We provide two folders for training and test, 
respectively, containing image/segmentation pairs, and one folder that contains the raw data (folder “raw”). (b) 
Exemplary images from the dataset next to the binary segmentation mask as present in the folders shown on 
the left. Note differing aspect ratios and image properties such as black image borders. (c) An exemplary subset 
from raw video 0.mp4 where two open/close cycles are visible. For illustration purposes, we cropped the image 
(blue frame). Consecutive frame ids (1…30) are in the lower right corner.

Camera # of videos

KayPentax HSV 9700 (Photron) 16

KayPentax HSV 9710 (Photron) 495

HERS 5562 Endocam Wolf 79

Phantom v210 30

FASTCAM Mini AX100 540K-C-16GB 20

Table 4.  Overview of cameras used to record the HSV.

Endoscope type # of videos Light source # of videos

Oral 70° 543 Kay Pentax Model 7152B 491

Oral 90° 46 Xenon Light

Nasal 2.4 mm 9 Wolf 300 W Xenon 79

Nasal 3.5 mm 12 CUDA Surgical E300 Xenon 40

N/A 30 N/A 30

Table 5.  Overview of the utilized light sources and endoscopes to record the HSV data.
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Glottis Analysis Tools.  One of the two software tools used to create the annotated samples, i.e. the segmentation 
masks for the data, is the GAT software developed in-house by the Erlangen group. The software is well known 
in the field and utilized by several renowned research groups to analyze HSV data13,58–60. The software provides a 
semi-automatic method to create segmentation masks using a seed-based region growing algorithm that relies on 
grayscale thresholds. In some cases, video quality was however insufficient - especially in regards to lighting - to 
allow a segmentation using GAT. In those cases the PiPrA software was employed. GAT is typically also used to 
compute the mentioned voice parameters such as the CPP36, but in our case we only required the segmentation 
masks. The GAT software is available on request (http://www.hno-klinik.uk-erlangen.de/phoniatrie/forschung/
computational-medicine/gat-software/) and can be obtained from the research group in Erlangen.

Pixel-Precise Annotator.  As the GAT software is streamlined for a rapid semi-automatic processing of HSV 
data, it currently does not support individual pixel adjustments. Furthermore, it is targeted at processing vid-
eos and not individual, discontinuous frames. Therefore, we developed a new software targeted specifically at 
creating high-quality, pixel-precise segmentation masks for the generation and fine tuning of the BAGLS data. 
The software implements a flood fill algorithm, but also allows annotating individual pixels. It can perform basic 
preprocessing steps such as brightness and contrast adjustments as well as a CLAHE histogram equalization. This 
software was utilized to annotate cases where the videos were of particularly low quality or featured insufficient 
illumination for the segmentation with GAT. The PiPrA software was also used for the final two checks by the 
experts to ensure that the test data met highest standards so that test scores are as reliable as possible. We provide 
the software open source online (https://github.com/anki-xyz/pipra).

Data Records
We made BAGLS online available at Zenodo (61, https://doi.org/10.5281/zenodo.3377544, link to latest version) 
and at Kaggle (https://www.kaggle.com/gomezp/benchmark-for-automatic-glottis-segmentation). Also, we pro-
vide an interface to the individual data to preview and select a subsection of the data at https://www.bagls.org.

As described in the Methods section, it consists of a blend of data from seven institutions, split into training 
and test set, and the raw data (Fig. 3a). In Fig. 3b example pairs of videoendoscopic images and corresponding 
binary segmentation masks from the test set are shown. As PNG files the data can be viewed using standard image 
software, and also imported for image processing into other software, such as Python and MATLAB, to develop 
and evaluate new segmentation methods.

We further provide the raw data as videos in *.mp4 file format with very high quality encoding settings (exam-
ple see Fig. 3c). The raw data can be previewed online at www.bagls.org as video snippets with 30 consecutive 
frames. Mp4 files can be opened with any conventional video playback software, such as VLC Media Player or 
QuickTime. For each raw video, we provide the corresponding segmentation maps created by our baseline neural 
network (see later paragraphs).

Every file is accompanied by a JSON (JavaScript Object Notation) file that contains important metadata 
related to the recording. This file is human-readable and can be opened with a standard text editor, as well as 
dynamically opened and processed in common programming languages, such as MATLAB or Python. In Table 6, 
we show the metadata for an example file re-arranged for illustration purposes.

Technical Validation
We inspected all of the available videos to ensure they contains no fragmented or any corrupted frames. However, 
we intentionally kept frames that are ill-lit, don’t show the vocal folds and/or the glottis, or are contaminated with 
recording artifacts, such as a honey comb pattern in case of recordings with flexible endoscopes. The reason for 
this is that any method will have to deal with these problems in a real clinical setting as well. The entire BAGLS 
dataset itself was also inspected twice by different segmenters. In the metadata that is shipped with the BAGLS 
dataset, we state the ID of the segmenter that originally segmented the frame (in the field “segmenter”, 0,1 or 2 
respectively) as well as the segmenter that checked and optionally post-processed the frame (“post-processed”, 
same id assignment as “segmenter”).

Key Value

Video Id 27

Camera HERS 5562 Endocam Wolf

Sampling rate (Hz) 4000

Video resolution (px, HxW) [256, 256]

Color false

Endoscope orientation 70°

Endoscope application oral

Age range (yrs) 90–100

Subject sex f

Subject disorder status spasmodic dysphonia

Segmenter 1

Post-processed 2

Table 6.  Example metadata for a given frame (BAGLS test/0.meta).
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The manually segmented frames comprise a key component of the BAGLS dataset. As the frames are seg-
mented by individuals and the image quality varies across recordings and especially pixels at borders are hard to 
classify the ground-truth is somewhat subjective (see earlier paragraphs). To validate the segmentation quality, 
we obtained another 500 segmentations by four other segmentation experts based on the same 500 randomly 
chosen frames from the BAGLS dataset and compared the Intersection over Union (IoU)48 metric that describes 
the overlap of two segmentations, e.g. from expert E1 and the ground-truth of a given frame:

∩
∪

=A B A B
A B

IoU( , ) ,

with A and B being two binary images classifying each pixel into foreground (1, glottis) and background (0, not 
glottis). The IoU score ranges between 0 (no overlap at all between A and B) and 1 (perfect overlap between A and 
B). We provide the median IoU scores for each additional expert in Table 7.

This resulted in an average IoU score of 0.772 indicating a high overlap across experts. As recently shown, glot-
tis segmentation is inherently subjective58, although we believe that the three experts providing the ground-truth 
ensured being as objective as possible.

Usage Notes
The dataset is accessible in several ways. On Zenodo and Kaggle, it is provided as three zip files that contain 
the training, the test and the raw data, respectively. The training and test folder contain 55,750 and 3,500 pairs 
of high-speed videoendoscopy frames and their respective binary segmentation masks with the corresponding 
metadata, respectively. The files are saved as losslessly compressed PNG files and can thus be opened using con-
ventional image readers. Benchmark scores should be reported on the data from the test folder, which should not 
be included during training. The metadata is in JSON file format and can be opened using conventional text edi-
tors. The raw data folder (“raw”) contains 640 files in mp4 file format and can also be opened using conventional 
video playback software. Additionally, each raw data entry is accompanied by corresponding segmentation maps 
created by our baseline neural network (see later paragraphs).

To demonstrate the applicability of the dataset - the ultimate goal of the BAGLS dataset -, we trained a deep 
neural network to perform the segmentation task. We used the U-Net architecture, a fully convolutional neural 
network architecture introduced by Ronneberger et al.62. It became popular, especially in medical imaging, after 
winning the ISBI cell tracking challenge 2015. It is characterized by its similarity to autoencoder architectures as it 
features an encoding and decoding part in the network. However, it also utilizes skip connections between blocks 
of the same (or close) spatial dimensions in the encoder and decoder part. It has seen application to a variety of 
problems in medical imaging19.

Preprocessing.  We applied several preprocessing steps to the BAGLS dataset for training the U-Net. We 
supply the unmodified data so that other researchers may test different preprocessing steps suitable to the archi-
tectures and approaches they might choose.

First, as most of the data are grayscale and color information is not inherently relevant to the segmentation 
task, we converted all images to grayscale. Secondly, as training batches in the Keras deep learning framework that 
we used, may not contain different image resolutions, we resized the training data to a resolution of 512 × 256 
pixels. For the test data, images that had resolutions that were not multiples of 32 were zero padded until the res-
olution was divisible by 32, as this was necessary for the used architecture due to the intra-network pooling oper-
ations. Pixel intensities (I) were normalized to ∈ −I [ 1, 1]normalized  using = −

.
I 1normalized

I
127 5

.
To improve generalization capabilities of the trained models, several data augmentation methods were used. 

In particular, we used the albumentations Python package63 to apply random brightness, contrast, gamma, 
Gaussian noise and blurring changes and also random rotations and horizontal flips to the images. This was done 
asynchronously during training. Thus, each training epoch featured novel training data.

Setup.  Training and inference were performed on a Titan RTX graphics card using TensorFlow 1.13.164 with 
Keras 2.2.4. We employed the Adam optimization algorithm65 with a cyclic learning rate between 10−3 and 10−6 66. 
The model was trained on a dice loss function. Training ran for 25 epochs.

To assess neural network performance, we investigated the common IoU metric as introduced in the Technical 
Validation section. However, instead of comparing segmentations of different experts, we here compare the pre-
dicted segmentation to the respective ground-truth as provided in the BAGLS dataset.

Additional Expert Id IoU

E1 0.745

E2 0.749

E3 0.798

E4 0.796

Average 0.772

Table 7.  Technical Validation of External Expert Segmentations.
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The training data were split into a training and validation set of 52,962 and 2,788 images respectively to track 
possible overfitting without evaluating the test data. The model with the highest IoU score on the validation set 
was chosen for subsequent analyses. The test set was evaluated only once for the final model.

Validation.  After 21 training epochs, a maximum IoU of 0.831 was reached on the validation set. The model 
achieved an IoU score of 0.799 on the test set. Figure 4a shows cumulative IoU scores on the test and validation 
set. The distribution is skewed and, thus, the mean is proportionally more affected by the lower IoU scores. 

Fig. 4  Evaluation of model performance using the Intersection over the Union (IoU). (a) Cumulative 
distribution of the IoU across validation (magenta) and test (blue) set. Shaded error shows 95% confidence 
interval of bootstrapped distributions. (b) Distribution of IoUs against segmented area in the ground truth. 
Left: validation set; right: test set. (c) Example images and segmentations for IoUs close to 0.25, 0.5 and 0.75. 
Intersection of segmented pixels in the ground truth and prediction in green. Blue and red pixels were classified 
as glottis only in the ground truth and only in the prediction, respectively. (d) An example video from the 
BAGLS dataset (0.mp4, same subset as in Fig. 3c) segmented (orange overlay) using the trained model with 
respective glottal area waveform (sum of segmented pixels over time).
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Notably, the overrepresentation of data from the Erlangen group in the training data does not seem to be par-
ticularly detrimental. This is clearly visible in Fig. 4a as the distribution of IoU scores for both, validation and the 
balanced test set, are very similar. As the sample sizes are quite large and already tiny differences would be statis-
tically significant, we decided to use bootstrapping, a common way to resample a given distribution and provide 
a confidence interval67. As the 95% confidence intervals are highly overlapping, we assume that both, validation 
and test test are drawn from the same distribution.

Figure 4b shows the distribution of IoU scores against the segmented area in the ground truth. Especially 
smaller areas correlate clearly with lower IoU scores. This is expected as the decision if individual pixels belong 
to the glottis can be particularly difficult and is score-wise proportionally more impactful for smaller areas. For 
example, if the ground-truth area consists only of three pixels, and the prediction consists of these very same three 
pixels, but also contains one more pixel, the IoU is 0.75. If the ground-truth area consists, however, of 100 pixels, 
and the prediction contains one more pixel not included in the ground-truth, the IoU is 0.99.

Over 75.8% of the test set segmentations have an IoU greater than 0.75, which already resembles a high seg-
mentation quality (dashed line in Fig. 4c). We also assessed the runtime of our model. Each forward pass took 
24 ms on on a graphics processing unit (GPU) or 2.12 s on the central processing unit (CPU). Thus, the analysis 
of a 500 frame video (resolution 512 × 256 px) requires about 12.0 s and 17.7 min for GPU and CPU, respectively.

We further evaluated the performance of the trained model on a coherent Video In Fig. 4d we show the 
segmentation performance on each single frame and the resulting glottal area waveform. We used this baseline 
neural network to segment each frame of the entire raw data and provide these segmentations together with the 
corresponding raw data online.

We provide a complete example of utilizing BAGLS online (https://github.com/anki-xyz/bagls). It features 
loading and preprocessing the data, training a deep neural network and segmentation of an example video.

Code availability
We provide the Glottis Analysis Tools software on request (http://www.hno-klinik.uk-erlangen.de/phoniatrie/
forschung/computational-medicine/gat-software/). The Pixel-Precise Annotator tool (PiPrA) is available open 
source online (https://github.com/anki-xyz/pipra). We provide a Jupyter notebook for training, evaluating and 
using the deep neural network as used in the Usage Notes section online under an open source license (https://
github.com/anki-xyz/bagls).
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